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Free convection from a disk rotating in a vertical plane 

By S. S. CHAWLA AND A. R. VERMA 
Department of Mathematics, Indian Institute of Technology, Kharagpur 

(Received 24 February 1982) 

An exact solution of the free convective flow of a viscous incompressible fluid from 
a heated disk, rotating in a vertical plane, is obtained. The non-axisymmetric fluid 
motion consists of two parts; the primary von Karman axisymmetric flow and the 
secondary buoyancy-induced cross-flow. A highly accurate solution of the energy 
equation is also derived for its subsequent use in the analysis of the cross-flow. 

1. Introduction 
The axisymmetry is destroyed in rotating flows when translational velocities are 

imposed on a basic symmetric flow. A class of such flows has been studied by Rott 
& Lewellen (1967). A particular case of this class is the steady flow due to a uniform 
free stream past a rotating disk. All the cases discussed by Rott & Lewellen belong 
to the general class of exact solutions of the Navier-Stokes equations analysed by 
Lin (1957). In the present paper we attempt to deal with yet another case of the same 
class by including the energy equation, coupled with the momentum equations 
through buoyancy. To this end, we consider the fluid motion and thermal field 
induced by a heated vertical disk of infinite extent rotating in contact with a viscous 
incompressible fluid. The symmetry of the basic von Karman flow is destroyed by 
the buoyancy-induced cross-flow. A suitable transformation uncouples the governing 
momentum and energy equations. The solution of the energy equation depends upon 
the primary axisymmetric flow due to  a rotating disk. The secondary cross-flow is 
governed by the thermal field as well as the primary von Karman flow. Thc secondary 
flow is found to vary on two lengthscales. The thermal forcing tends to dominate the 
centrifugal action as the Prandtl number of the fluid takes on comparatively larger 
values. 

It is worthwhile to  mention that no solution exists in the absence of rotation of 
the disk. 

2. Mathematical formulation 
Consider an infinite vertical disk placed a t  z = 0 in contact with a viscous fluid of 

semi-infinite extent. The disk is rotating with constant angular velocity R about the 
z-axis, which is horizontal. The disk is kept a t  a constant temperature T, whereas 
the temperature of the fluid in the far-off region is T,. We take the Cartesian 
coordinate system (x, y, z )  in a non-rotating frame of reference with the x-axis along 
the upward vertical aligned with the negative direction of gravity g. The equations 
governing the velocity components (u, u, w), the pressure p ,  and the temperature T 
of an incompressible fluid are 

ux+vy+w, = 0, (2.1) 
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u'u, + v'uy + w'u, = -p-'py + v(v,, + vyy + 'u,,), ( 2 . 3 )  

uwx + vwy + ww, = - p - p ,  + v(w,, + wyy + w,,), 
UT, + vT, + wT, = K (  T,, + Tyy + q,), 

wherein we have not taken viscous dissipation into account. p ,  v ,  p and K are 
respectively the density, kinematic viscosity, coefficient of thermal expansion and 
thermal conductivity of the fluid. The variation in density is taken into account only 
in the derivation of the buoyancy force, while other density variations are neglected 
within the framework of constant-property fluid. The boundary Conditions are 

u = - y Q ,  v = x Q ,  w = O ,  T=T, a t  z = 0, ( 2 . 6 ~ )  

u+O, v+O, T+T,  as z-+co.  (2 .6b )  

The resulting flow is a member of the general class of exact solutions of the 
NaviepStokes equations given by Lin (1957) ,  and consistently with the continuity 
equation i t  is appropriate to  assume that the velocity, pressure and temperature take 

( 2 . 7 ~ )  
the form 

= Q[xG-~H,l+gP(T,-T,)H,/n, (2 .7b )  

w = (vQ)?H, p = -pvQP, T = T,+O(T,-T,), ( 2 . 7 ~ )  

u = Q[ - ~ x H ,  - yG] + gp( T, - T, ) H J Q ,  

where H ,  G,  H I ,  H,, P and B are functions of r defined by 

7 = ( Q / v ) i z .  ( 2 . 7 d )  

Introducing the expressions ( 2 . 7 )  into the momentum and energy equations 
(2.2)-(2.5) and equating the coefficients of x, the coefficients of y and terms 
independent of x and y separately to zero, we arrive at the following set of differential 
equations : 

(2 .8 )  

(2 .9 )  

H,,,-HH,,+iH:-2G2 = 0, G,,-HG,+GH, = 0, 

8,, - B H ~ ,  = 0,  

H17, - H H , ,  ++HI H,  + GH, + 8 = 0,  ( 2 . 1 0 ~ )  

H,,, - HH,, + iH2  H7 - GH, = 0 ,  (2.10 b)  

where u ( = V / K )  is the Prandtl number. The boundary conditions (2.6) are transformed 
into 

H ( 0 )  = 0, H,(O) = 0 ,  G ( 0 )  = 1 ,  O(0) = 1 ,  H,(O) = 0 = H,(O), ( 2 . 1 1 ~ )  

H,(co) = 0 ,  G ( w )  = 0 ,  O(CO) = 0, H,(co) = 0, H,(co )  = 0. ( 2 . l l b )  

The substitution (2 .7 )  reduces the governing equations to an uncoupled system of 
differential sets (2 .8 )  (the primary flow), ( 2 . 9 )  (thermal field) and (2 .10 )  (the secondary 
cross-flow), which can be solved one aft'er the other in that order. The flow field 
characterized by H and G is the classical von Karman flow due to the rotating disk. 
The set of equations (2 .8 )  has been solved by von Karman (1921) ,  Cochran (1934) ,  
Fettis (1955) and Renton (1966).  We will make use of Benton's solution in the 
subsequent analysis. It is obvious that the solution of the coupled differential system 
(2 .10)  governing the cross-flow (H, ,  H 2 )  depends upon the solution of the set (2.8) and 
the energy equation ( 2 . 9 ) .  None of the available solutions of the energy equation (2 .9 )  
can, however, be employed, because they are either known numerically or 
asymptotically. In  $ 3  we proceed to obtain an analytical-numerical solution of the 
energy equation. 
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3. Thermal field 
The steady heat transfer from a rotating disk was considered by Millsaps & 

Pohlhausen (1952), Sparrow & Gregg (1959) and Chao & Greif (1974). They solved 
the governing equation numerically for various values of the Prandtl number cr. Riley 
(1964), on the other hand, obtained the rate of heat transfer for large and small values 
of cr. Asymptotic solutions of the energy equation (2.9) were also obtained by Morgan 
& Warner (1956), Davies (1959) and Davies & Baxter (1961). Unfortunately none of 
these solutions serves the purpose under investigation. We have therefore reconsidered 
the energy equation (2.9) and obtained a highly accurate solution by employing a 
method based on the ideas of Fettis (1955) and Benton (1966). This is a relatively 
simple method in which the solution of the differential equation (2.9) is reduced to 
the solution of a system of linear algebraic equations. Moreover, the solution thus 
obtained takes into account the effect of curvature of the complete von KarmLn flow 
profile and gives a unified representation to the thermal field for all values of cr. For 
this purpose we follow Benton (1966) and change to the new variable h = eceT, where 
c = 088447, and write 

H = c ( h ( ~ ) - i ) ,  G = czg(h), e = A ~ - ~ K ( A ) ,  (3.1) 

so that h, g and K are given by 

h3h'"+h2(2h+hh"-;h'2)+hhh'+2g2 = 0, ( 3 . 2 ~ )  

h2gf'+h(hg'-h'g) = 0, (3.2b) 

with h(1) = 1 ,  h'(1) = 0, cZg(1) = 1 ,  h(0) = 0, g(0) = 0, ( 3 . 2 ~ )  

and h2K"+(cr-l)hK'-(cr-l)K+ah[(cr-l)K+hK'] = 0, (3.3a) 

with K ( l )  = 1 ,  K(0)  = 0. (3.3b) 

I n  the above equations a prime denotes differentiation with respect to A. We solve 
(3.2) and (3.3) by substituting a power-series expansion in h of the form 

00 m m 

g(h) = Z a,hn, h(h) = E b,hn, K(h)  = Z c,hn, (3.4) 
n=1 n=1 n=1 

where a, and b, are tabulated in Benton (1966) and c, is given by the recursion 
relation 

n-3 .~ 

(n-l)(n+cr-l)c,  = -cr E ~ + c r - l ) c j b , - i  (n = 1,2 ,3 ,  ...). (3.5) 
j=l 

These are n-  1 linear equations in n unknowns c,. In  order to  complete the system, 
we make use of the thermal boundary condition a t  the disk, namely K( 1 )  = 1 ,  to get 

m 

c c, = 1 .  (3.6) 
n=1 

The boundary condition a t  h = 0 (corresponding to li, + CQ) is automatically satisfied 
by the substitution (3.4). The linear system of algebraic equations (3.5), (3.6) can be 
solved for c, (n = 1 , 2 , 3 , .  . . ) for all values of the Prandtl number u to any desired 
order of accuracy. For the purpose of computing c, (by matrix inversion), a large 
number of values of b,  were generated from the recursion relation corresponding to 
(3.2) (see Benton 1966), with 

b, = 2.36449, a, = 1.53678. (3.7) 
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U 

001 
0.04 
0 1  
0.2 
0 3  
0.4 
0.5 
0 6  
0 7  
0.72 
0.8 
0 9  
1.2 
I .4 
1.6 
1 +3 
2.0 
2.2 
2.5 
3.0 
5 0  

C1 

1.0002 
1.0030 
1.0172 
1.0622 
1.1298 
1.2182 
1.3272 
1.4578 
1.6118 
1.6456 
1.7918 
2.00 10 
2.8464 
36484 
4.7137 
6.1297 
80136 

105172 
159350 
32.2985 

607.4207 

- q o )  
00087 
00333 
00766 
0.1361 
0 1 849 
02263 
02623 
0.2943 
0.3231 
0.3286 
03495 
03737 
04371 
04734 
0.5080 
05370 
05620 
06042 
06280 
06826 
0.6920 

TABLE 1 

ffI?/(O) 
28-4073 

7.5993 
3.4921 
2.1130 
1.6423 
1.3998 
1.2491 
1.1448 
1 .Of574 
1.054 1 
1.007 1 
09583 
0.8540 
@SO51 
0.7660 
07338 
(4.7066 
06831 
06530 
0% 132 
01.5173 

-H,,(O) 
21.1869 

5.2477 
2.1 135 
1.0827 
07440 
05763 
0.4762 
04095 
03618 
03538 
0.3258 
0.2976 
0.2403 
02151 
0.1957 
0.1804 
01678 
01573 
01444 
0.1279 
00923 

This helped in achieving the absolute accuracy of the present solution up to five 
significant places. The computed values of c1 and the corresponding coefficient of heat 
transfer O,(O)  are presented in table 1 for some representative values of the Prandtl 
number. These values of c,  can be used to generate all other coefficients c ,  in (3.4) 
with the help of the recursion relation (3.5). 

4. Free convection 
I n  order to  obtain the buoyancy-induced cross-flow, which is governed by (2 .10)  

and (2 .11)  and evidently depends on all three velocity components of the von Karman 
flow, we set 

2% a h  
C2H1 = Ylhh’-2y,g-- (g-h‘-’g) +L(h’-huT-lh’) +h“h,(h), 

a-1 cr- 1 (4.1) 

where a,, a*, y1 and y2 are constants to  be determined. The specific advantage of the 
above transformation is that  i t  enables us to generate the solution of h, and h, without 
having to solve for the system of linear equations into which the resulting differential 
set is ultimately reduced. Substituting (4.1) and (4.2) into (2.10) and (2.1 l ) ,  we get 

h[h%;+h(2crh; +hh;-$h’h,)+a(cr- 1 )  h,+ahh,+gh,] 

h[h2h~+h(2crh~+hh;:-Bh’h2)+a(cr- 1 )  h2+nhh,-gh1] 

+2a,(2hg‘+(a-2)g+gh)-a2(2h2h”+crhh’+hhh’)+K = 0, (4.3) 

- 2az(2hg’ + (cr - 2 )  g + gh) - a,( 2h2h” + crhh’ + hhh’) = 0, (4.4) 
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with h,( l )  = 2, 2Y 
CZ 

-2% h2(l) = - 
c2 ' h,(O) = 0 = h,(O) 

We now write hl(h) and h,(h) as power series in h of the form 

a, m 

(4.5) 

where d, and en are given by the recursion relations (after using the expression (3.4) 
for g, h and K )  

[ ( n -  1) ( n  + 2a- 2) + a(a- l ) ]  dn-l + c ,  + (2% - 2 + a) (2a,a, - na,b,) 
12-1 

j=1 

- - C ([(n-j) a, &-- 2a1 a,-J bj -aj-l enpj-&(2n- 3j+ 1 + 2a) bj-,dnPj), (4.7) 

[ ( n  - 1 )  (n + 2 a  - 2) + a(a - 1 )] enPl - (2n - 2 + a) (na, b, + 2a,a,) 
n-1 

j-1 
= - C ( [ (n - j )a lb , - j+2a2a ,~ i ]  bj+aj- ld , - j -&(2n-3j+ 1 +2a) bj-le,-j), (4.8) 

with n = 1,2 , .  . . . For n = 1,  the above recursion relations immediately yield the 
values of a1 and a2 as 

2a, b, a(& + 4 4 '  

where a, and b, are given by (3.7) and c1 is given in table 1 for various values of a. 
Once a, and a2 are evaluated, all the coefficients d, and en can be obtained from the 
relations (4.7) and (4.8). Finally, the values of the constants y1 and y, are derived 
from the boundary conditions (4.5) as 

(4.9) 
1=2- -a a - c1 

00 m 

n-1 n=i 
y1 = -$c2 C en,  y2 = tc2 E d n' (4.10) 

These determine the solution of the differential set (2.10) and (2.11) completely for 
all values of the Prandtl number a. Values of (dl, el) and (yl, y z )  obtained from (4.7), 
(4.8) and (4.10) respectively, correct to four decimal places, are given in table 2. The 
coefficients of skin friction Hl,(0) and H,,(O) corresponding to the cross-flow are 
reproduced in table 1 for selected values of the Prandtl number. The variation of 
the stress components for the whole range of the Prandtl number is represented in 
figure 1 .  The flow functions Hl(r) and H,(r ) ,  giving the induced cross-flow, are 
exhibited in figure 2 for various values of the Prandtl number B. 

We note from figure 2 that  the profiles for the buoyancy-induced cross-flow are 
much thicker than the primary von KarmBn boundary-layer profile (see Benton 1966) 
as a varies through comparatively small values. As a increases, the thickness of the 
superposed free-convection boundary layer decreases. The thermal forcing superposes 
a fluid motion along the x-axis. The centrifugal action of the primary flow tends to 
divert fluid flow in the negative y-direction. The von K&rm&n axial velocity directed 
towards the rotating disk (and proportional to H( co )) causes convective transport 
of the induced vorticity towards the surface of the disk. As such the cross-flow varies 
on two lengthscales. As a increases, the thickness of the thermal boundary layer 
decreases (see Millsaps & Pohlhausen 1952), and the effect of the thermal forcing 
tends to be confined to the neighbourhood of the disk. In  these circumstances, the 
convection imparted by the axial inflow is weakened, as H itself is weaker in the 
vicinity of the rotating disk. Within a radius gP(T,- T,)/Q2, the secondary cross-flow 
actually dominates the primary von Karman flow. 
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v 

0.01 
004  
0.1 
0.2 
0 3  
0 4  
0.5 
0 6  
0.7 
072  
0 8  
0 9  
1.2 
1 -4 
1.6 
1 +3 
2.0 
2.2 
2.5 
3.0 
5.0 

01 

15294.5938 
944799 1 
14921 1 0 
37.408 4 
17.066 4 
10029 2 
67986 
5.056 1 
4.0143 
3.857 4 
3.346 4 
2.897 3 
2,209 2. 
2026 3 
1.959 0 
1.9729 
2.052 5 
2191 5 
2.5188 
3.446 9 

21.7810 

4 
11 649097 7 

6984194 
104.054 7 
23.894 7 
10.1 78 4 
5731 5 
3.835 4 
2.902 3 
2.4100 
2.343 4 
2.1494 
2.025 0 
2.093 6 
2.37 I 8 
2.8055 
3.407 5 
4.2107 
5262 4 
7.474 1 

13.7890 
192.2966 

TABLE 2 

-Y1 
4934.351 6 

2952085 
441794 
10300 1 
4.452 5 
25176 
1.662 1 
1.2149 
09545 
09158 
0791 1 
0683 2 
0521 9 
0-4803 
04655 
0469 1 
0487 5 
0.5189 
0.5924 
07984 
47595 

Yz 
-4.2868 
-1'1674 
- 051 1 4 
- 0257 1 
-01514 
-0087 1 
- 0040 9 
- 0004 5 

0026 1 
0031 8 
0.053 2 
00780 
01466 
01922 
0240 7 
0294 1 
0354 7 
04244 
0552 7 
08584 
6.077 4 

FIGURE 1. Variation of the stress components H,,(O) (-) anti H,,(O) (--------) versus v. 
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FIGURE 2. Variation of the cross-flow functions H,(r])  (-) and H,(r])  (-----------) with r]  
for ( 1 )  (r = 0 4 ;  (2) 0 7 2 ;  (3) 2; (4) 5. 

On a disk of radius R,  the torque associated with the von Karman flow is 
4pnR4(vQ3)? G,(O). For a counter-clockwise rotation of the disk, the coefficient of shear 
associated with the cross-flow has components H,,(O) and H,,(O) in the positive 
x-direction and negative y-direction respectively. Both of these components decrease 
as cr increases. On a finite disk of radius R (neglecting the edge effects), the resultant 
force is 

P9P~R2(Tw-Tm) (;y [H&(O)+&,(0)14 

acting through the centre a t  an angle 

against the direction of rotation measured from the vertical x-axis. $ varies from $n 
to zero as cr takes on values from zero to infinity, implying that the thermal forcing 
tends to dominate the centrifugal action a t  large values of the Prandtl number u. 

R E F E R E N C E S  

BENTON, E. R. 1966 J .  Fluid Mech. 24, 781. 
CHAO, B .  T. C GREIF, R.  1974 Trans. A.S.M.E. C :  J .  Heat Transfer 96, 463. 
COCHRAN, W. G. 1934 Proc. Camb. Phil. Soc. 30, 365. 
DAVIES, D.  R. 1959 &. J .  Mech. Appl. Math. 12, 14. 
DAVIES, D. R. & BAXTER, C. B. 1961 &. J .  Mech. Appl. Math. 14, 223. 
FETTIS, H. E. 1955 In Proc. 4th Midwest Conf. Fluid Mech., Purdue, p. 93. 
K ~ R M ~ N ,  T. VON 1921 2. angew. Math. Mech. 1, 233. 
IAN, C .  C .  1957 Arch. Rat. Meeh. Anal. 1, 391. 
MILLSAPS, K. & POHLHAUSEN, K. 1952 J .  Aero. Sci. 19, 120. 
MORGAN, G. W. and WARNER, W. H. 1956 J .  Aero. Sci. 23, 937. 
RILEY, N. 1964 &. J .  Mech. Appl. Math. 17, 331. 
ROTT, N. & LEWELLEN, W. S. 1967 Phys. Fluids 10, 1867. 
SPARROW, E. M. & GREQQ, J. L. 1959 Trans. A.S.M.E.  C :  J .  Heat Transfer 81, 249. 


