Free convection from a disk rotating in a vertical plane

By S. S. CHAWLA and A. R. VERMA
Department of Mathematics, Indian Institute of Technology, Kharagpur

(Received 24 February 1982)
An exact solution of the free convective flow of a viscous incompressible fluid from a heated disk, rotating in a vertical plane, is obtained. The non-axisymmetric fluid motion consists of two parts; the primary von Kármán axisymmetric flow and the secondary buoyancy-induced cross-flow. A highly accurate solution of the energy equation is also derived for its subsequent use in the analysis of the cross-flow.

1. Introduction

The axisymmetry is destroyed in rotating flows when translational velocities are imposed on a basic symmetric flow. A class of such flows has been studied by Rott \& Lewellen (1967). A particular case of this class is the steady flow due to a uniform free stream past a rotating disk. All the cases discussed by Rott \& Lewellen belong to the general class of exact solutions of the Navier-Stokes equations analysed by Lin (1957). In the present paper we attempt to deal with yet another case of the same class by including the energy equation, coupled with the momentum equations through buoyancy. To this end, we consider the fluid motion and thermal field induced by a heated vertical disk of infinite extent rotating in contact with a viscous incompressible fluid. The symmetry of the basic von Kármán flow is destroyed by the buoyancy-induced cross-flow. A suitable transformation uncouples the governing momentum and energy equations. The solution of the energy equation depends upon the primary axisymmetric flow due to a rotating disk. The secondary cross-flow is governed by the thermal field as well as the primary von Kármán flow. The secondary flow is found to vary on two lengthscales. The thermal forcing tends to dominate the centrifugal action as the Prandtl number of the fluid takes on comparatively larger values.

It is worthwhile to mention that no solution exists in the absence of rotation of the disk.

2. Mathematical formulation

Consider an infinite vertical disk placed at $z=0$ in contact with a viscous fluid of semi-infinite extent. The disk is rotating with constant angular velocity Ω about the z-axis, which is horizontal. The disk is kept at a constant temperature T_{w} whereas the temperature of the fluid in the far-off region is T_{∞}. We take the Cartesian coordinate system (x, y, z) in a non-rotating frame of reference with the x-axis along the upward vertical aligned with the negative direction of gravity g. The equations governing the velocity components (u, v, w), the pressure p, and the temperature T of an incompressible fluid are

$$
\begin{align*}
u_{x}+v_{y}+w_{z} & =0, \tag{2.1}\\
u u_{x}+v u_{y}+w u_{z} & =-\rho^{-1} p_{x}+\nu\left(u_{x x}+u_{y y}+u_{z z}\right)+g \beta\left(T-T_{\infty}\right), \tag{2.2}
\end{align*}
$$

$$
\begin{align*}
u v_{x}+v v_{y}+w v_{z} & =-\rho^{-1} p_{y}+\nu\left(v_{x x}+v_{y y}+v_{z z}\right), \tag{2.3}\\
u w_{x}+v w_{y}+w w_{z} & =-\rho^{-1} p_{z}+\nu\left(w_{x x}+w_{y y}+w_{z z}\right), \tag{2.4}\\
u T_{x}+v T_{y}+w T_{z} & =\kappa\left(T_{x x}+T_{y y}+T_{z z}\right), \tag{2.5}
\end{align*}
$$

wherein we have not taken viscous dissipation into account. ρ, ν, β and κ are respectively the density, kinematic viscosity, coefficient of thermal expansion and thermal conductivity of the fluid. The variation in density is taken into account only in the derivation of the buoyancy force, while other density variations are neglected within the framework of constant-property fluid. The boundary conditions are

$$
\begin{gather*}
u=-y \Omega, \quad v=x \Omega, \quad w=0, \quad T=T_{\mathrm{w}} \quad \text { at } \quad z=0, \tag{2.6a}\\
u \rightarrow 0, \quad v \rightarrow 0, \quad T \rightarrow T_{\infty} \quad \text { as } \quad z \rightarrow \infty . \tag{2.6b}
\end{gather*}
$$

The resulting flow is a member of the general class of exact solutions of the Navier-Stokes equations given by Lin (1957), and consistently with the continuity equation it is appropriate to assume that the velocity, pressure and temperature take the form

$$
\begin{align*}
u & =\Omega\left[-\frac{1}{2} x H_{\eta}-y G\right]+g \beta\left(T_{\mathrm{w}}-T_{\infty}\right) H_{1} / \Omega, \tag{2.7a}\\
v & =\Omega\left[x G-\frac{1}{2} y H_{\eta}\right]+g \beta\left(T_{\mathrm{w}}-T_{\infty}\right) H_{2} / \Omega, \tag{2.7b}\\
w & =(\nu \Omega)^{\frac{1}{2}} H, \quad p=-\rho \nu \Omega P, \quad T=T_{\infty}+\theta\left(T_{\mathrm{w}}-T_{\infty}\right), \tag{2.7c}
\end{align*}
$$

where H, G, H_{1}, H_{2}, P and θ are functions of η defined by

$$
\begin{equation*}
\eta=(\Omega / \nu)^{\frac{1}{z}} z . \tag{2.7d}
\end{equation*}
$$

Introducing the expressions (2.7) into the momentum and energy equations (2.2)-(2.5) and equating the coefficients of x, the coefficients of y and terms independent of x and y separately to zero, we arrive at the following set of differential equations:

$$
\begin{gather*}
H_{\eta \eta \eta}-H H_{\eta \eta}+\frac{1}{2} H_{\eta}^{2}-2 G^{2}=0, \quad G_{\eta \eta}-H G_{\eta}+G H_{\eta}=0, \tag{2.8}\\
\theta_{\eta \eta}-\sigma H \theta_{\eta}=0, \tag{2.9}\\
H_{1 \eta \eta}-H H_{1 \eta}+\frac{1}{2} H_{1} H_{\eta}+G H_{2}+\theta=0, \tag{2.10a}\\
H_{2 \eta \eta}-H H_{2 \eta}+\frac{1}{2} H_{2} H_{\eta}-G H_{1}=0, \tag{2.10b}
\end{gather*}
$$

where $\sigma(=\nu / \kappa)$ is the Prandtl number. The boundary conditions (2.6) are transformed into

$$
\begin{align*}
& H(0)=0, \quad H_{\eta}(0)=0, \quad G(0)=1, \quad \theta(0)=1, \quad H_{1}(0)=0=H_{2}(0) \tag{2.11a}\\
& H_{\eta}(\infty)=0, \quad G(\infty)=0, \quad \theta(\infty)=0, \quad H_{2}(\infty)=0, \quad H_{1}(\infty)=0 . \tag{2.11b}
\end{align*}
$$

The substitution (2.7) reduces the governing equations to an uncoupled system of differential sets (2.8) (the primary flow), (2.9) (thermal field) and (2.10) (the secondary cross-flow), which can be solved one after the other in that order. The flow field characterized by H and G is the classical von Kármán flow due to the rotating disk. The set of equations (2.8) has been solved by von Kármán (1921), Cochran (1934), Fettis (1955) and Benton (1966). We will make use of Benton's solution in the subsequent analysis. It is obvious that the solution of the coupled differential system (2.10) governing the cross-flow (H_{1}, H_{2}) depends upon the solution of the set (2.8) and the energy equation (2.9). None of the available solutions of the energy equation (2.9) can, however, be employed, because they are either known numerically or asymptotically. In $\S 3$ we proceed to obtain an analytical-numerical solution of the energy equation.

3. Thermal field

The steady heat transfer from a rotating disk was considered by Millsaps \& Pohlhausen (1952), Sparrow \& Gregg (1959) and Chao \& Greif (1974). They solved the governing equation numerically for various values of the Prandtl number σ. Riley (1964), on the other hand, obtained the rate of heat transfer for large and small values of σ. Asymptotic solutions of the energy equation (2.9) were also obtained by Morgan \& Warner (1956), Davies (1959) and Davies \& Baxter (1961). Unfortunately none of these solutions serves the purpose under investigation. We have therefore reconsidered the energy equation (2.9) and obtained a highly accurate solution by employing a method based on the ideas of Fettis (1955) and Benton (1966). This is a relatively simple method in which the solution of the differential equation (2.9) is reduced to the solution of a system of linear algebraic equations. Moreover, the solution thus obtained takes into account the effect of curvature of the complete von Kármán flow profile and gives a unified representation to the thermal field for all values of σ. For this purpose we follow Benton (1966) and change to the new variable $\lambda=e^{-c \eta}$, where $c=0.88447$, and write

$$
\begin{equation*}
H=c(h(\lambda)-1), \quad G=c^{2} g(\lambda), \quad \theta=\lambda^{\sigma-1} K(\lambda), \tag{3.1}
\end{equation*}
$$

so that h, g and K are given by

$$
\begin{gather*}
\lambda^{3} h^{\prime \prime \prime}+\lambda^{2}\left(2 h^{\prime \prime}+h h^{\prime \prime}-\frac{1}{2} h^{\prime 2}\right)+\lambda h h^{\prime}+2 g^{2}=0, \tag{3.2a}\\
\lambda^{2} g^{\prime \prime}+\lambda\left(h g^{\prime}-h^{\prime} g\right)=0, \tag{3.2b}
\end{gather*}
$$

with

$$
\begin{equation*}
h(1)=1, \quad h^{\prime}(1)=0, \quad c^{2} g(1)=1, \quad h(0)=0, \quad g(0)=0, \tag{3.2c}
\end{equation*}
$$

and $\quad \lambda^{2} K^{\prime \prime}+(\sigma-1) \lambda K^{\prime}-(\sigma-1) K+\sigma h\left[(\sigma-1) K+\lambda K^{\prime}\right]=0$,
with

$$
\begin{equation*}
K(1)=1, \quad K(0)=0 . \tag{3.3a}
\end{equation*}
$$

In the above equations a prime denotes differentiation with respect to λ. We solve (3.2) and (3.3) by substituting a power-series expansion in λ of the form

$$
\begin{equation*}
g(\lambda)=\sum_{n=1}^{\infty} a_{n} \lambda^{n}, \quad h(\lambda)=\sum_{n=1}^{\infty} b_{n} \lambda^{n}, \quad K(\lambda)=\sum_{n=1}^{\infty} c_{n} \lambda^{n} \tag{3.4}
\end{equation*}
$$

where a_{n} and b_{n} are tabulated in Benton (1966) and c_{n} is given by the recursion relation

$$
\begin{equation*}
(n-1)(n+\sigma-1) c_{n}=-\sigma \sum_{j=1}^{n-1}(j+\sigma-1) c_{j} b_{n-j} \quad(n=1,2,3, \ldots) . \tag{3.5}
\end{equation*}
$$

These are $n-1$ linear equations in n unknowns c_{n}. In order to complete the system, we make use of the thermal boundary condition at the disk, namely $K(1)=1$, to get

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}=1 \tag{3.6}
\end{equation*}
$$

The boundary condition at $\lambda=0$ (corresponding to $\eta \rightarrow \infty$) is automatically satisfied by the substitution (3.4). The linear system of algebraic equations (3.5), (3.6) can be solved for $c_{n}(n=1,2,3, \ldots)$ for all values of the Prandtl number σ to any desired order of accuracy. For the purpose of computing c_{n} (by matrix inversion), a large number of values of b_{n} were generated from the recursion relation corresponding to (3.2) (see Benton 1966), with

$$
\begin{equation*}
b_{1}=2.36449, \quad a_{1}=1.53678 . \tag{3.7}
\end{equation*}
$$

σ	c_{1}	$-\theta_{\eta}(0)$	$H_{1 \eta}(0)$	$-H_{2 \eta}(0)$
0.01	1.0002	$0 \cdot 0087$	28.4073	21.1869
0.04	1.0030	0.0333	7.5993	$5 \cdot 2477$
$0 \cdot 1$	1.0172	0.0766	$3 \cdot 4921$	$2 \cdot 1135$
$0 \cdot 2$	1.0622	$0 \cdot 1361$	$2 \cdot 1130$	1.0827
$0 \cdot 3$	1-1298	0.1849	1.6423	0.7440
$0 \cdot 4$	$1 \cdot 2182$	0.2263	$1 \cdot 3998$	0.5763
0.5	1.3272	0.2623	$1 \cdot 2491$	0.4762
0.6	$1 \cdot 4578$	0.2943	$1 \cdot 1448$	$0 \cdot 4095$
0.7	$1 \cdot 6118$	0.3231	$1 \cdot 0674$	$0 \cdot 3618$
0.72	$1 \cdot 6456$	$0 \cdot 3286$	1.0541	0.3538
0.8	1.7918	$0 \cdot 3495$	1.0071	0.3258
0.9	2.0010	$0 \cdot 3737$	0.9583	0.2976
$1 \cdot 2$	$2 \cdot 8464$	0.4371	0.8540	$0 \cdot 2403$
$1 \cdot 4$	3.6484	$0 \cdot 4734$	$0 \cdot 8051$	$0 \cdot 2151$
1.6	$4 \cdot 7137$	0.5080	0.7660	$0 \cdot 1957$
1.8	$6 \cdot 1297$	0.5370	$0 \cdot 7338$	$0 \cdot 1804$
$2 \cdot 0$	8.0136	0.5620	$0 \cdot 7066$	$0 \cdot 1678$
$2 \cdot 2$	10.5172	0.6042	$0 \cdot 6831$	$0 \cdot 1573$
2.5	15.9350	0.6280	$0 \cdot 6530$	$0 \cdot 1444$
3.0	32.2985	0.6826	0.6132	$0 \cdot 1279$
50	$607 \cdot 4207$	0.6920	$0 \cdot 5173$	0.0923
		Tabl		

This helped in achieving the absolute accuracy of the present solution up to five significant places. The computed values of c_{1} and the corresponding coefficient of heat transfer $\theta_{\eta}(0)$ are presented in table 1 for some representative values of the Prandtl number. These values of c_{1} can be used to generate all other coefficients c_{n} in (3.4) with the help of the recursion relation (3.5).

4. Free convection

In order to obtain the buoyancy-induced cross-flow, which is governed by (2.10) and (2.11) and evidently depends on all three velocity components of the von Kármán flow, we set

$$
\begin{align*}
& c^{2} H_{1}=\gamma_{1} \lambda h^{\prime}-2 \gamma_{2} g-\frac{2 \alpha_{1}}{\sigma-1}\left(g-\lambda^{\sigma-1} g\right)+\frac{\alpha_{2} \lambda}{\sigma-1}\left(h^{\prime}-\lambda^{\sigma-1} h^{\prime}\right)+\lambda^{\sigma} h_{1}(\lambda) \tag{4.1}\\
& c^{2} H_{2}=2 \gamma_{1} g+\gamma_{2} \lambda h^{\prime}+\frac{\alpha_{1} \lambda}{\sigma-1}\left(h^{\prime}-\lambda^{\sigma-1} h^{\prime}\right)+\frac{2 \alpha_{2}}{\sigma-1}\left(g-\lambda^{\sigma-1} g\right)+\lambda^{\sigma} h_{2}(\lambda) \tag{4.2}
\end{align*}
$$

where $\alpha_{1}, \alpha_{2}, \gamma_{1}$ and γ_{2} are constants to be determined. The specific advantage of the above transformation is that it enables us to generate the solution of h_{1} and h_{2} without having to solve for the system of linear equations into which the resulting differential set is ultimately reduced. Substituting (4.1) and (4.2) into (2.10) and (2.11), we get

$$
\begin{align*}
& \lambda\left[\lambda^{2} h_{1}^{\prime \prime}+\lambda\left(2 \sigma h_{1}^{\prime}+h h_{1}^{\prime}-\frac{1}{2} h^{\prime} h_{1}\right)+\sigma(\sigma-1) h_{1}+\sigma h h_{1}+g h_{2}\right] \\
& \quad+2 \alpha_{1}\left(2 \lambda g^{\prime}+(\sigma-2) g+g h\right)-\alpha_{2}\left(2 \lambda^{2} h^{\prime \prime}+\sigma \lambda h^{\prime}+\lambda h h^{\prime}\right)+K=0, \tag{4.3}\\
& \begin{aligned}
\lambda\left[\lambda^{2} h_{2}^{\prime \prime}+\lambda\left(2 \sigma h_{2}^{\prime}+h h_{2}^{\prime}-\frac{1}{2} h^{\prime} h_{2}\right)+\sigma(\sigma-1) h_{2}+\sigma h h_{2}-g h_{1}\right] \\
\quad-2 \alpha_{2}\left(2 \lambda g^{\prime}+(\sigma-2) g+g h\right)-\alpha_{1}\left(2 \lambda^{2} h^{\prime \prime}+\sigma \lambda h^{\prime}+\lambda h h^{\prime}\right)=0,
\end{aligned}
\end{align*}
$$

with

$$
\begin{equation*}
h_{1}(1)=\frac{2 \gamma_{2}}{c^{2}}, \quad h_{2}(1)=\frac{-2 \gamma_{1}}{c^{2}}, \quad h_{1}(0)=0=h_{2}(0) \tag{4.5}
\end{equation*}
$$

We now write $h_{1}(\lambda)$ and $h_{2}(\lambda)$ as power series in λ of the form

$$
\begin{equation*}
h_{1}(\lambda)=\sum_{n=1}^{\infty} d_{n} \lambda^{n}, \quad h_{2}(\lambda)=\sum_{n=1}^{\infty} e_{n} \lambda^{n} \tag{4.6}
\end{equation*}
$$

where d_{n} and e_{n} are given by the recursion relations (after using the expression (3.4) for g, h and K)

$$
\begin{align*}
& {[(n-1)(n+2 \sigma-2)+\sigma(\sigma-1)] d_{n-1}+c_{n}+(2 n-2+\sigma)\left(2 \alpha_{1} a_{n}-n \alpha_{2} b_{n}\right)} \\
& \quad=\sum_{j=1}^{n-1}\left(\left[(n-j) \alpha_{2} b_{n-j}-2 \alpha_{1} a_{n-j}\right] b_{j}-a_{j-1} e_{n-j}-\frac{1}{2}(2 n-3 j+1+2 \sigma) b_{j-1} d_{n-j}\right), \tag{4.7}\\
& {[(n-1)(n+2 \sigma-2)+\sigma(\sigma-1)] e_{n-1}-(2 n-2+\sigma)\left(n \alpha_{1} b_{n}+2 \alpha_{2} a_{n}\right)} \\
& \quad=-\sum_{j=1}^{n-1}\left(\left[(n-j) \alpha_{1} b_{n-j}+2 \alpha_{2} a_{n-j}\right] b_{j}+a_{j-1} d_{n-j}-\frac{1}{2}(2 n-3 j+1+2 \sigma) b_{j-1} e_{n-j}\right), \tag{4.8}
\end{align*}
$$

with $n=1,2, \ldots$ For $n=1$, the above recursion relations immediately yield the values of α_{1} and α_{2} as

$$
\begin{equation*}
\frac{-\alpha_{1}}{2 a_{1}}=\frac{\alpha_{2}}{b_{1}}=\frac{c_{1}}{\sigma\left(b_{1}^{2}+4 a_{1}^{2}\right)}, \tag{4.9}
\end{equation*}
$$

where a_{1} and b_{1} are given by (3.7) and c_{1} is given in table 1 for various values of σ. Once α_{1} and α_{2} are evaluated, all the coefficients d_{n} and e_{n} can be obtained from the relations (4.7) and (4.8). Finally, the values of the constants γ_{1} and γ_{2} are derived from the boundary conditions (4.5) as

$$
\begin{equation*}
\gamma_{1}=-\frac{1}{2} c^{2} \sum_{n=1}^{\infty} e_{n}, \quad \gamma_{2}=\frac{1}{2} c^{2} \sum_{n=1}^{\infty} d_{n} . \tag{4.10}
\end{equation*}
$$

These determine the solution of the differential set (2.10) and (2.11) completely for all values of the Prandtl number σ. Values of (d_{1}, e_{1}) and (γ_{1}, γ_{2}) obtained from (4.7), (4.8) and (4.10) respectively, correct to four decimal places, are given in table 2. The coefficients of skin friction $H_{1 \eta}(0)$ and $H_{2 \eta}(0)$ corresponding to the cross-flow are reproduced in table 1 for selected values of the Prandtl number. The variation of the stress components for the whole range of the Prandtl number is represented in figure 1. The flow functions $H_{1}(\eta)$ and $H_{2}(\eta)$, giving the induced cross-flow, are exhibited in figure 2 for various values of the Prandtl number σ.

We note from figure 2 that the profiles for the buoyancy-induced cross-flow are much thicker than the primary von Kármán boundary-layer profile (see Benton 1966) as σ varies through comparatively small values. As σ increases, the thickness of the superposed free-convection boundary layer decreases. The thermal forcing superposes a fluid motion along the x-axis. The centrifugal action of the primary flow tends to divert fluid flow in the negative y-direction. The von Kármán axial velocity directed towards the rotating disk (and proportional to $H(\infty)$) causes convective transport of the induced vorticity towards the surface of the disk. As such the cross-flow varies on two lengthscales. As σ increases, the thickness of the thermal boundary layer decreases (see Millsaps \& Pohlhausen 1952), and the effect of the thermal forcing tends to be confined to the neighbourhood of the disk. In these circumstances, the convection imparted by the axial inflow is weakened, as H itself is weaker in the vicinity of the rotating disk. Within a radius $g \beta\left(T_{\mathrm{w}}-T_{\infty}\right) / \Omega^{2}$, the secondary cross-flow actually dominates the primary von Kármán flow.

σ	e_{1}	d_{1}	$-\gamma_{1}$	γ_{2}
0.01	15294:5938	11649.0977	4924-3516	$-4 \cdot 2868$
0.04	944.7991	6984194	$295 \cdot 2085$	-1.1674
$0 \cdot 1$	149.2110	104.0547	$44 \cdot 1794$	-0.5114
$0 \cdot 2$	37.4084	23.8947	$10 \cdot 3001$	-0.2571
$0 \cdot 3$	17.0664	$10 \cdot 1784$	$4 \cdot 4525$	-0.1514
$0 \cdot 4$	10.0292	$5 \cdot 7315$	2.5176	-0.087 1
0.5	6.7986	$3 \cdot 8354$	$1 \cdot 6621$	-0.0409
$0 \cdot 6$	$5 \cdot 0561$	$2 \cdot 9023$	$1 \cdot 2149$	-0.0045
0.7	4.0143	$2 \cdot 4100$	0.9545	0.0261
0.72	$3 \cdot 8574$	$2 \cdot 3434$	0.9158	0.0318
0.8	$3 \cdot 3464$	$2 \cdot 1494$	$0 \cdot 7911$	0.0532
0.9	$2 \cdot 8973$	2.0250	0.6832	0.0780
$1 \cdot 2$	2-2092,	2.0936	0.5219	$0 \cdot 1466$
$1 \cdot 4$	2.0263	$2 \cdot 3718$	$0 \cdot 4803$	$0 \cdot 1922$
1.6	1.9590	$2 \cdot 8055$	$0 \cdot 4655$	0.2407
$1 \cdot 8$	1.9729	$3 \cdot 4075$	$0 \cdot 4691$	02941
2.0	$2 \cdot 0525$	$4 \cdot 2107$	$0 \cdot 4875$	$0 \cdot 3547$
22	$2 \cdot 1915$	$5 \cdot 2624$	05189	0.4244
2.5	2.5188	$7 \cdot 4741$	0.5924	0.5527
3.0	$3 \cdot 4469$	13.7890	0.7984	$0 \cdot 8584$
5.0	21.7810	192.2966	4.7595	6.0774
Table 2				

Figure 1. Variation of the stress components $H_{1 \eta}(0)(-)$ and $H_{2 \eta}(0)(-----)$ versus σ.

Figure 2. Variation of the cross-flow functions $H_{1}(\eta)(-)$ and $H_{2}(\eta)(-\cdots-----)$ with η

$$
\text { for (1) } \sigma=0.4 ;(2) 0.72 ;(3) 2 ;(4) 5
$$

On a disk of radius R, the torque associated with the von Kármán flow is ${ }_{2}^{\frac{1}{2}} \rho \pi R^{4}\left(\nu \Omega^{3}\right)^{\frac{1}{2}} G_{\eta}(0)$. For a counter-clockwise rotation of the disk, the coefficient of shear associated with the cross-flow has components $H_{1 \eta}(0)$ and $H_{2 \eta}(0)$ in the positive x-direction and negative y-direction respectively. Both of these components decrease as σ increases. On a finite disk of radius R (neglecting the edge effects), the resultant force is

$$
\rho g \beta \pi R^{2}\left(T_{\mathrm{w}}-T_{\infty}\right)\left(\frac{\nu}{\Omega}\right)^{\frac{1}{2}}\left[H_{1 \eta}^{2}(0)+H_{2 \eta}^{2}(0)\right]^{\frac{1}{2}}
$$

acting through the centre at an angle

$$
\phi=\arctan \frac{H_{2 \eta}(0)}{H_{1 \eta}(0)}
$$

against the direction of rotation measured from the vertical x-axis. ϕ varies from $\frac{1}{4} \pi$ to zero as σ takes on values from zero to infinity, implying that the thermal forcing tends to dominate the centrifugal action at large values of the Prandtl number σ.

REFERENCES

Benton, E. R. 1966 J. Fluid Mech. 24, 781.
Chao, B. T. \& Greif, R. 1974 Trans. A.S.M.E. C: J. Heat Transfer 96, 463.
Cochran, W. G. 1934 Proc. Camb. Phil. Soc. 30, 365.
Davies, D. R. 1959 Q. J. Mech. Appl. Math. 12, 14.
Davies, D. R. \& Baxter, C. B. 1961 Q. J. Mech. Appl. Math. 14, 223.
Fettis, H. E. 1955 In Proc. 4th Midwest Conf. Fluid Mech., Purdue, p. 93.
Kármín, T. von 1921 Z. angew. Math. Mech. 1, 233.
Lin, C. C. 1957 Arch. Rat. Mech. Anal. 1, 391.
Millsaps, K. \& Pohlhausen, K. 1952 J. Aero. Sci. 19, 120.
Morgan, G. W. and Warner, W. H. 1956 J. Aero. Sci. 23, 937.
Riley, N. 1964 Q. J. Mech. Appl. Math. 17, 331.
Rott, N. \& Lewellen, W.S. 1967 Phys. Fluids 10, 1867.
Sparrow, E. M. \& Gregg, J. L. 1959 Trans. A.S.M.E. C: J. Heat Transfer 81, 249.

